Answer:

False

Explanation:

n divides \(\displaystyle{m}+{1}\) implies

\(\displaystyle{\frac{{{m}+{1}}}{{{n}}}}={\frac{{{m}}}{{{n}}}}+{\frac{{{1}}}{{{n}}}}\)

the fraction \(\displaystyle{\frac{{{m}}}{{{n}}}}\) written as sum of two unit fractions

Hence \(\displaystyle{\frac{{{n}}}{{{m}}}}\) is not a fraction of \(\displaystyle{\frac{{{m}+{1}}}{{{n}}}}\).

False

Explanation:

n divides \(\displaystyle{m}+{1}\) implies

\(\displaystyle{\frac{{{m}+{1}}}{{{n}}}}={\frac{{{m}}}{{{n}}}}+{\frac{{{1}}}{{{n}}}}\)

the fraction \(\displaystyle{\frac{{{m}}}{{{n}}}}\) written as sum of two unit fractions

Hence \(\displaystyle{\frac{{{n}}}{{{m}}}}\) is not a fraction of \(\displaystyle{\frac{{{m}+{1}}}{{{n}}}}\).